Перевод: со всех языков на все языки

со всех языков на все языки

управляющая точка

  • 1 управляющая точка

    Information technology: control point (кривой)

    Универсальный русско-английский словарь > управляющая точка

  • 2 control point

    управляющая точка (кривой); опорная точка; точка привязки

    English-Russian information technology > control point

  • 3 control point

    [kən'trəʊlpɔɪnt]
    5) Геодезия: опознак
    8) Телекоммуникации: полицейская радиостанция
    11) Вычислительная техника: точка привязки, управляющая точка (кривой)
    17) Контроль качества: момент проверки
    18) Оружейное производство: контрольная (опорная) точка
    19) Химическое оружие: пост управления
    21) Фармация: контрольная точка (при отборе проб) (точка в чистом помещении, в которой выполняется контроль биозагрязнений и в которой опасность может быть предупреждена, устранена или снижена до допустимого уровня)

    Универсальный англо-русский словарь > control point

  • 4 полевая шина

    1. fieldbus
    2. field bus

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > полевая шина

  • 5 field bus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > field bus

  • 6 fieldbus

    1. полевая шина

     

    полевая шина
    -
    [Интент]

    полевая магистраль по зарубежной терминологии
    Имеет много терминов-синонимов и обозначает специализированные последовательные магистрали малых локальных сетей (МЛС), ориентированны на сопряжение с ЭВМ рассредоточенных цифровых датчиков и исполнительных органов. Магистрали рассчитаны на применение в машиностроении, химической промышленности, в системах автоматизации зданий, крупных установках, бытовых электронных системах, системах автомобильного оборудования, малых контрольно-измерительных и управляющих системах на основе встраиваемых микроЭВМ и т. п. Основными магистралями являются Bitbus, MIL STD-1553В. В настоящее время рабочими группами IEC (65С и SP-50) стандартизируются два основных типа МЛС: высокоскоростные и низкоскоростные, ориентированные на датчики.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    ЧТО ТАКОЕ FIELDВUS?
    Так пишется оригинальный термин, который в русском переводе звучит как «промышленная сеть». Fieldbus — это не какой-то определенный протокол передачи данных и не тип сетевой архитектуры, этот термин не принадлежит ни одной отдельно взятой компании и обозначает скорее сферу применения, чем какую-либо конкретную сетевую технологию.
    Давайте попробуем сформулировать лишь некоторые основные требования, которые можно предъявить к «идеальной» промышленной сети.
    1. Производительность.
    2. Предсказуемость времени доставки информации.
    3. Помехоустойчивость.
    4. Доступность и простота организации физического канала передачи данных.
    5. Максимальный сервис для приложений верхнего уровня.
    6. Минимальная стоимость устройств аппаратной реализации, особенно на уровне контроллеров.
    7. Возможность получения «распределенного интеллекта», путем предоставления максимального доступа к каналу нескольким ведущим узлам.
    8.Управляемость и самовосстановление в случае возникновения нештатных ситуаций.

    [Сергей Гусев. Краткий экскурс в историю промышленных сетей]


    Международный стандарт IEC 61158 “Fieldbus for use in Industrial Control Systems” («Промышленная управляющая сеть для применения в промышленных системах управления») определяет восемь независимых и несовместимых коммуникационных технологий, из которых FOUNDATION Fieldbus H1 и PROFIBUS PA стали в значительной степени преобладающими в различных отраслях промышленности.
    Эти промышленные сети соответствуют требованиям стандарта IEC 61158 2, который устанавливает физический уровень так называемых промышленных сетей H1.
    Основными требованиями к промышленным сетям H1 являются:
    ● передача данных и питание устройств нижнего уровня по одной витой паре;
    ● гибкость при проектировании различных топологий сети;
    ● совместимость всех полевых приборов;
    ● взрывобезопасность при установкево взрывоопасных зонах;
    ● распределение одной инфраструктуры на многочисленные сегменты.

    [Виктор Жданкин. Концепция FieldConnex® для промышленных сетей FOUNDATION Fieldbus H1 и PROFIBUS_PA: повышение производительности и снижение затрат. СТА 2/2009]


    Термин полевая шина является дословным переводом английского термина fieldbus.
    Термин промышленная сеть является более точным переводом и в настоящее время именно он используется в профессиональной технической литературе.

    Промышленная сеть — сеть передачи данных, связывающая различные датчики, исполнительные механизмы, промышленные контроллеры и используемая в промышленной автоматизации. Термин употребляется преимущественно в автоматизированной системе управления технологическими процессами (АСУТП).

    Устройства используют сеть для:

    • передачи данных, между датчиками, контроллерами и исполнительными механизмами;
    • диагностики и удалённого конфигурирования датчиков и исполнительных механизмов;
    • калибрования датчиков;
    • питания датчиков и исполнительных механизмов;
    • связи между датчиками, исполнительными механизмами, ПЛК и АСУ ТП верхнего уровня.

    В промышленных сетях для передачи данных применяют:

    • электрические линии;
    • волоконно-оптические линии;
    • беспроводную связь (радиомодемы и Wi-Fi).

    Промышленные сети могут взаимодействовать с обычными компьютерными сетями, в частности использовать глобальную сеть Internet.

    [ Википедия]


    Главной функцией полевой шины является обеспечение сетевого взаимодействия между контроллерами и удаленной периферией (например, узлами ввода/вывода). Помимо этого, к полевой шине могут подключаться различные контрольно-измерительные приборы ( Field Devices), снабженные соответствующими сетевыми интерфейсами. Такие устройства часто называют интеллектуальными ( Intelligent Field Devices), так как они поддерживают высокоуровневые протоколы сетевого обмена.

    Пример полевой шины представлен на рисунке 1.

    4911
    Рис. 1. Полевая шина.

    Как уже было отмечено, существует множество стандартов полевых шин, наиболее распространенные из которых приведены ниже:

    1. Profibus DP
    2. Profibus PA
    3. Foundation Fieldbus
    4. Modbus RTU
    5. HART
    6. DeviceNet

    Несмотря на нюансы реализации каждого из стандартов (скорость передачи данных, формат кадра, физическая среда), у них есть одна общая черта – используемый алгоритм сетевого обмена данными, основанный на классическом принципе Master-Slave или его небольших модификациях.
    Современные полевые шины удовлетворяют строгим техническим требованиям, благодаря чему становится возможной их эксплуатация в тяжелых промышленных условиях. К этим требованиям относятся:

    1. Детерминированность. Под этим подразумевается, что передача сообщения из одного узла сети в другой занимает строго фиксированный отрезок времени. Офисные сети, построенные по технологии Ethernet, - это отличный пример недетерминированной сети. Сам алгоритм доступа к разделяемой среде по методу CSMA/CD не определяет время, за которое кадр из одного узла сети будет передан другому, и, строго говоря, нет никаких гарантий, что кадр вообще дойдет до адресата. Для промышленных сетей это недопустимо. Время передачи сообщения должно быть ограничено и в общем случае, с учетом количества узлов, скорости передачи данных и длины сообщений, может быть заранее рассчитано.
    2. Поддержка больших расстояний. Это существенное требование, ведь расстояние между объектами управления может порой достигать нескольких километров. Применяемый протокол должен быть ориентирован на использование в сетях большой протяженности.
    3. Защита от электромагнитных наводок. Длинные линии в особенности подвержены пагубному влиянию электромагнитных помех, излучаемых различными электрическими агрегатами. Сильные помехи в линии могут исказить передаваемые данные до неузнаваемости. Для защиты от таких помех применяют специальные экранированные кабели, а также оптоволокно, которое, в силу световой природы информационного сигнала, вообще нечувствительно к электромагнитным наводкам. Кроме этого, в промышленных сетях должны использоваться специальные методы цифрового кодирования данных, препятствующие их искажению в процессе передачи или, по крайней мере, позволяющие эффективно детектировать искаженные данные принимающим узлом.
    4. Упрочненная механическая конструкция кабелей и соединителей. Здесь тоже нет ничего удивительного, если представить, в каких условиях зачастую приходиться прокладывать коммуникационные линии. Кабели и соединители должны быть прочными, долговечными и приспособленными для использования в самых тяжелых окружающих условиях (в том числе агрессивных атмосферах).

    По типу физической среды полевые шины делятся на два типа:

    1. Полевые шины, построенные на базе оптоволоконного кабеля.
      Преимущества использования оптоволокна очевидны: возможность построения протяженных коммуникационных линий (протяженностью до 10 км и более); большая полоса пропускания; иммунитет к электромагнитным помехам; возможность прокладки во взрывоопасных зонах.
      Недостатки: относительно высокая стоимость кабеля; сложность физического подключения и соединения кабелей. Эти работы должны выполняться квалифицированными специалистами.
    2. Полевые шины, построенные на базе медного кабеля.
      Как правило, это двухпроводной кабель типа “витая пара” со специальной изоляцией и экранированием. Преимущества: удобоваримая цена; легкость прокладки и выполнения физических соединений. Недостатки: подвержен влиянию электромагнитных наводок; ограниченная протяженность кабельных линий; меньшая по сравнению с оптоволокном полоса пропускания.

    Итак, перейдем к рассмотрению методов обеспечения отказоустойчивости коммуникационных сетей, применяемых на полевом уровне. При проектировании и реализации этот аспект становится ключевым, так как в большой степени определяет характеристики надежности всей системы управления в целом.

    На рисунке 2 изображена базовая архитектура полевой шины – одиночная (нерезервированная). Шина связывает контроллер С1 и четыре узла ввода/вывода IO1-IO4. Очевидно, что такая архитектура наименее отказоустойчива, так как обрыв шины, в зависимости от его локализации, ведет к потере коммуникации с одним, несколькими или всеми узлами шины. В нашем случае в результате обрыва теряется связь с двумя узлами.

    4912
    Рис. 2. Нерезервированная шина.

    Здесь важное значение имеет термин “единичная точка отказа” (SPOF, single point of failure). Под этим понимается место в системе, отказ компонента или обрыв связи в котором приводит к нарушению работы всей системы. На рисунке 2 единичная точка отказа обозначена красным крестиком.

    На рисунке 3 показана конфигурация в виде дублированной полевой шины, связывающей резервированный контроллер с узлами ввода/вывода. Каждый узел ввода/вывода снабжен двумя интерфейсными модулями. Если не считать сами модули ввода/вывода, которые резервируются редко, в данной конфигурации единичной точки отказа нет.

    4913
    Рис. 3. Резервированная шина.

    Вообще, при построении отказоустойчивых АСУ ТП стараются, чтобы единичный отказ в любом компоненте (линии связи) не влиял на работу всей системы. В этом плане конфигурация в виде дублированной полевой шины является наиболее распространенным техническим решением.

    На рисунке 4 показана конфигурация в виде оптоволоконного кольца. Контроллер и узлы ввода/вывода подключены к кольцу с помощью резервированных медных сегментов. Для состыковки медных сегментов сети с оптоволоконными применяются специальные конверторы среды передачи данных “медь<->оптоволокно” (OLM, Optical Link Module). Для каждого из стандартных протоколов можно выбрать соответствующий OLM.

    4914
    Рис. 4. Одинарное оптоволоконное кольцо.

    Как и дублированная шина, оптоволоконное кольцо устойчиво к возникновению одного обрыва в любом его месте. Система такой обрыв вообще не заметит, и переключение на резервные интерфейсные и коммуникационные модули не произойдет. Более того, обрыв одного из двух медных сегментов, соединяющих узел с оптоволоконным кольцом, не приведет к потере связи с этим узлом. Однако второй обрыв кольца может привести к неработоспособности системы. В общем случае два обрыва кольца в диаметрально противоположных точках ведут к потере коммуникации с половиной подключенных узлов.

    На рисунке 5 изображена конфигурация с двойным оптическим кольцом. В случае если в результате образования двух точек обрыва первичное кольцо выходит из строя, система переключается на вторичное кольцо. Очевидно, что такая архитектура сети является наиболее отказоустойчивой. На рисунке 5 пошагово изображен процесс деградации сети. Обратите внимание, сколько отказов система может перенести до того, как выйдет из строя.

    4915
    Рис. 5. Резервированное оптоволоконное кольцо.

    [ http://kazanets.narod.ru/NT_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > fieldbus

  • 7 CP

    I
    1. cable party - телеграфно-кабельный отряд; команда по прокладке линий связи;
    2. cable sensor - кабельный датчик;
    3. call on positive - вызов по плюсу;
    4. calorific power - теплотворная способность;
    5. candidate prototype - конкурсный образец;
    6. candle power - сила света в свечах;
    7. card punch - перфорация карт; вывод на перфокарты; карточный перфоратор;
    8. casing point - глубина спуска обсадной колонны;
    9. casing pressure - давление в затрубном пространстве; давление в кольцевом пространстве между обсадной и бурильной или лифтовой колоннами; давление в обсадной колонне; затрубное давление;
    10. cathodic protection - катодная защита;
    11. center of pressure - центр давления;
    12. center tap - отвод от средней точки;
    13. centipoise - сантипуаз;
    14. central processor - центральный процессор; ЦП;
    15. ceramic package - керамический корпус;
    16. cesspool - выгребная яма;
    17. character point - указатель символа;
    18. charging pump - питательный насос;
    19. chemically pure - химически чистый;
    20. circular pitch - шаг зацепления;
    21. circular polarization - круговая поляризация;
    22. clock phase - фаза синхронизации;
    23. clock pulse - синхроимпульс; синхронизирующий импульс; тактовый импульс;
    24. closed-packed crystals - кристаллы в закрытом корпусе;
    25. coating permeability - проницаемость покрытия;
    26. coefficient of performance - холодильный коэффициент; тепловой коэффициент;
    27. cold pipe - трубопровод низкотемпературной среды, трубопровод нерадиоактивной среды;
    28. combined parity - комбинированная чётность;
    29. command post - командный пункт; КП;
    30. command processor - командный процессор;
    31. command pulse - командный импульс;
    32. communications personnel - личный состав боевой части связи; личный состав службы связи;
    33. communications processor - связной процессор, процессор передачи данных;
    34. communications programs - программы развития средств связи;
    35. computer - компьютер; электронная вычислительная машина, ЭВМ; вычислитель; счётно-решающее устройство;
    36. conceptual phase - этап выработки концепции; этап концептуального проектирования;
    37. concrete pipe - железобетонная труба;
    38. condensate pump - конденсатный насос;
    39. conductive plastics - проводящий полимер;
    40. console processor - процессор пульта управления;
    41. constant pitch - постоянный шаг;
    42. constant power - постоянная мощность;
    43. constant pressure - постоянное давление;
    44. construction permit - разрешение на строительство;
    45. containment purge - продувка помещений гермооболочки ядерного реактора;
    46. continuous processor - машина для непрерывной обработки кино-или фотопленки;
    47. control panel - коммутационная панель; контрольный щит; наборное поле; панель управления; пульт управления;
    48. control parameter - нормированный показатель;
    49. control plane - плоскость управления; управляющая пленка;
    50. control point - контрольная точка; контрольное значение; радиостанция службы управления воздушным движением;
    51. control post - пульт управления;
    52. control procedure - управляющая процедура; процесс управления;
    53. control program - программа управления; управляющая программа;
    54. controllable pitch - регулируемый шаг;
    55. coolant pump - насос подачи теплоносителя на АЭС;
    56. cooling pond - бассейн выдержки радиоактивных отходов;
    57. copy-protected - с защитой от копирования;
    58. corrosion product - продукт коррозии;
    59. cost of propellant - стоимость ракетного топлива;
    60. coupling - связь;
    61. critical power - критическая мощность;
    62. cyclopentane - циклопентан
    ————————
    molecular heat at constant pressure - молекулярная теплоёмкость при постоянном давлении

    Англо-русский словарь технических аббревиатур > CP

  • 8 footing

    ˈfutɪŋ сущ.
    1) опора для ноги to lose one's footingпоскользнуться, оступиться to keep one's footing ≈ не поскользнуться, устоять, удерживать равновесие
    2) базис, опора, основа, основание, фундамент Syn: foundation, base
    3) прочное положение( в обществе, учреждении и т. п.) an equal footing ≈ равное положение solid, sure footing ≈ твердое положение, прочная позиция unequal footing ≈ неравное положение to get/gain a footing in societyприобрести положение в обществе
    4) итог, сумма столбца цифр ∙ to pay (for) one's footing разг. ≈ сделать вступительный взнос (в виде дара, для организации вечеринки и т. п.) ;
    поставить магарыч to be on a friendly footing with smb. ≈ быть на дружеской ноге с кем-л. on an equal footingна равных основаниях to put on a war footingприводить в боевую готовность;
    переводить на военное положение точка опоры, опора;
    устойчивое положение ног - mind your *! не оступитесь!, смотрите, куда идете! - the icy hill provided no * на скользкой горке невозможно было удержаться на ногах - to keep one's * прочно держаться на ногах, устоять - to lose one's * поскользнуться, оступиться, потерять точку опоры - he lost his * and fell он оступился и упал - to gain a * обрести точку опоры, закрепиться на небольшом пространстве (тк. в ед. ч.) положение - to obtain a * in society завоевать прочное положение в обществе - to effect a * приобрести положение в обществе - to keep one's * сохранить свое положение - to lose one's * потерять свое положение взаимоотношения - to be on a friendly * with smb. находиться в дружеских отношениях с кем-л. - to be on a /one, an equal/ * быть на равной ноге;
    находиться в равных условиях материал для вязки носка и пятки чулка итог (столбца цифр) фундамент, основание, опора площадь соприкосновения > to put on a war * привести в состояние боевой готовности;
    поставить на военные рельсы > to pay (for) one's * внести свою долю /свой пай/;
    поставить угощение (в связи с приходом на новую работу и т. п.) to pay (for) one's ~ разг. поставить магарыч;
    to be on a friendly ~ (with smb.) быть на дружеской ноге (с кем-л.) control ~ вчт. служебная управляющая постинформация footing pres. p. от foot ~ итог, сумма столбца цифр ~ итог (столбца цифр) ~ опора для ноги;
    to lose one's footing поскользнуться, оступиться ~ основание, фундамент, опора ~ положение ~ прочное положение (в обществе, учреждении и т. п.) ;
    to get (или to gain) a footing in society приобрести положение в обществе ~ вчт. служебная постинформация ~ точка опоры ~ устойчивое положение ~ прочное положение (в обществе, учреждении и т. п.) ;
    to get (или to gain) a footing in society приобрести положение в обществе ~ опора для ноги;
    to lose one's footing поскользнуться, оступиться on equal ~ на равной основе on equal ~ на равных условиях page ~ вчт. служебная информация в конце страницы to pay (for) one's ~ разг. поставить магарыч;
    to be on a friendly ~ (with smb.) быть на дружеской ноге (с кем-л.) to pay (for) one's ~ разг. сделать вступительный взнос( в виде дара, для организации вечеринки и т. п.) to put on a war ~ приводить в боевую готовность;
    переводить на военное положение report ~ вчт. суммарные данные в конце отчета

    Большой англо-русский и русско-английский словарь > footing

  • 9 control station

    1) Морской термин: опорный береговой пункт
    3) Техника: ведущая станция (в радионавигации), диспетчерский пункт (в сети связи), пост управления, станция управления, центр управления
    4) Железнодорожный термин: распорядительная станция
    8) Вычислительная техника: управляющая станция (в сети), диспетчерский пункт (в сети)
    11) Нефтегазовая техника станция управления и контроля
    12) Автоматика: пульт управления
    13) Робототехника: пункт управления
    14) Оружейное производство: пункт управления огнем
    15) Безопасность: командный пункт
    16) Золотодобыча: пункт привязки
    17) Производственные помещения: точка привязки наблюдений

    Универсальный англо-русский словарь > control station

  • 10 land corner

    Универсальный англо-русский словарь > land corner

  • 11 control terminal

    Универсальный англо-русский словарь > control terminal

  • 12 CP

    1) Centronics-[ compatible] Parallel [I/O port] - параллельный порт [ввода-вывода] типа Centronics
    2) central processor - центральный процессор, ЦП
    см. тж. CPU
    3) см. code page
    4) Computer Professional - специалисты, досл. компьютерные профессионалы
    5) Copy Protected - защищено от копирования
    6) Current Point - текущая точка
    7) Current Pointer - указатель текущей позиции
    8) Current Position - текущая позиция
    11) control program - управляющая программа
    13) см. control panel
    14) см. control point
    15) см. cloud provider

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > CP

  • 13 Single Point/CV

    Одна точка/управляющая вершина

    The terms and expressions program 3DS Max. English-Russian dictionary > Single Point/CV

  • 14 cat-and-mouse station

    English-Russian big polytechnic dictionary > cat-and-mouse station

  • 15 footing

    [ˈfutɪŋ]
    to pay (for) one's footing разг. поставить магарыч; to be on a friendly footing (with smb.) быть на дружеской ноге (с кем-л.) control footing вчт. служебная управляющая постинформация footing pres. p. от foot footing итог, сумма столбца цифр footing итог (столбца цифр) footing опора для ноги; to lose one's footing поскользнуться, оступиться footing основание, фундамент, опора footing положение footing прочное положение (в обществе, учреждении и т. п.); to get (или to gain) a footing in society приобрести положение в обществе footing вчт. служебная постинформация footing точка опоры footing устойчивое положение footing прочное положение (в обществе, учреждении и т. п.); to get (или to gain) a footing in society приобрести положение в обществе footing опора для ноги; to lose one's footing поскользнуться, оступиться on equal footing на равной основе on equal footing на равных условиях page footing вчт. служебная информация в конце страницы to pay (for) one's footing разг. поставить магарыч; to be on a friendly footing (with smb.) быть на дружеской ноге (с кем-л.) to pay (for) one's footing разг. сделать вступительный взнос (в виде дара, для организации вечеринки и т. п.) to put on a war footing приводить в боевую готовность; переводить на военное положение report footing вчт. суммарные данные в конце отчета

    English-Russian short dictionary > footing

  • 16 instruction

    [ɪnˈstrʌkʃən]
    absolute instruction вчт. абсолютная команда absolute instruction вчт. команда на машинном языке address instruction вчт. адресная команда assembly instruction вчт. команда ассемблера assignment instruction вчт. команда присваивания blank instruction вчт. пустая команда branch instruction вчт. команда ветвления branch instruction вчт. команда перехода break point instruction вчт. команда контрольного перехода break point instruction вчт. команда останова breakpoint instruction вчт. команда контрольного перехода breakpoint instruction вчт. команда останова built-in instruction вчт. встроенная команда built-in macro instruction вчт. встроенная макрокоманда byte instruction вчт. байтовая команда call instruction вчт. команда вызова call instruction вчт. команда обращения clear and add instruction вчт. команда очистки и сложения complete instruction вчт. полная команда computer instruction вчт. машинная команда computer-assisted instruction машинное обучение computer-managed instruction машинное обучение conditional branch instruction вчт. команда условного перехода conditional jump instruction вчт. команда условного перехода constant instruction вчт. команда-константа control instruction вчт. команда управления cycle instruction вчт. команда цикла data transfer instruction вчт. команда передачи данных decision instruction вчт. команда ветвления decision instruction вчт. команда выбора решения decision instruction вчт. команда объявления decision instruction вчт. команда условного перехода diagnostic instruction вчт. команда вызова direct access instruction вчт. команда прямого доступа direct instruction вчт. команда с прямой адресацией discrimination instruction вчт. команда условного перехода display instruction вчт. команда отображения do-nothing instruction вчт. пустая команда dummy instruction вчт. пустая команда dummy instruction фиктивная команда dummy instruction вчт. холостая команда effective instruction вчт. действующая команда effective instruction действующий порядок elementary instruction основная инструкция entry instruction вчт. команда входа entry instruction вчт. точка входа exchange instruction вчт. команда обмена executive instruction вчт. команда управления external instruction вчт. внешняя команда general instruction вчт. основная команда halt instruction вчт. команда останова housekeeping instruction вчт. организационная команда housekeeping instruction вчт. служебная команда ignore instruction вчт. команда блокировки illegal instruction вчт. запрещенная команда initiating instruction вчт. инициирующая команда input instruction вчт. команда ввода instruction знания instruction инструктаж instruction инструктирование instruction вчт. инструкция instruction инструкция instruction вчт. команда instruction (амер.) наказ (делегатам) голосовать за определенного кандидата instruction наказ (судьи) присяжным instruction наказ судьи присяжным instruction образование instruction образованность instruction обучение instruction поручение (адвокату) ведения дела instruction предписание instruction просвещение instruction указание instruction control unit вчт. блок обработки команд interpretive instruction вчт. интерпретируемая команда interpretive instruction вчт. макрокоманда jump instruction вчт. команда перехода jump instruction вчт. схема объединения link instruction вчт. команда связи logical instruction вчт. логическая команда look-up instruction вчт. команда поиска macro instruction вчт. макрокоманда memory-to-memory instruction вчт. команда типа память-память milti-address instruction вчт. многоадресная команда move instruction вчт. команда перемещения multiaddress instruction вчт. многоадресная команда native instruction вчт. собственная команда no-address instruction вчт. безадресная команда no-op instruction вчт. пустая команда non-privileged instruction вчт. непривилегированная команда one-address instruction вчт. одноадресная команда operating instruction инструкция по эксплуатации operation instruction вчт. инструкция по эксплуатации optional-stop instruction вчт. команда условного останова output instruction вчт. команда вывода pause instruction вчт. команда паузы prepayment instruction транс. инструкция по франкированию presumptive instruction вчт. исходная команда privileged instruction вчт. привилегированная команда professional instruction профессиональная инструкция programmed instruction программированное обучение; программа самообразования (структурированная) propagation instruction вчт. команда продвижения данных pseudo instruction вчт. псевдокоманда register instruction вчт. регистровая команда register-to-register instruction вчт. команда типа регистр-регистр repetition instruction вчт. команда повторения restart instruction вчт. команда рестарта restartable instruction вчт. прерываемая команда return instruction вчт. команда возврата search instruction вчт. команда поиска seek instruction вчт. команда установки sending instruction вчт. команда пересылки setup instruction инструкция по монтажу shift instruction вчт. команда сдвига single-address instruction вчт. одноадресная команда skip instruction вчт. команда пропуска staff instruction служебная инструкция steering instruction вчт. управляющая команда stop instruction вчт. команда останова storage-to-register instruction вчт. команда типа память-регистр storage-to-storage instruction вчт. команда типа память-память symbolic instruction вчт. символическая команда test-and-set instruction вчт. команда установки семафора three-address instruction вчт. трехадресная команда three-plus-one-address instruction вчт. четырехадресная команда transfer instruction вчт. команда пересылки transfer instruction вчт. команда перехода trap instruction вчт. команда прерывания two-address instruction вчт. двухадресная команда unconditional jump instruction вчт. команда безусловного перехода unused instruction вчт. неиспользуемая команда user instruction инструкция для пользователя waste instruction вчт. холостая команда word instruction вчт. команда операции над словами write instruction вчт. команда записи zero-address instruction вчт. безадресная команда

    English-Russian short dictionary > instruction

См. также в других словарях:

  • УПРАВЛЯЮЩАЯ ФУНКЦИЯ — управление, функция и(t), входящая в дифференциальное уравнение значения к рой в каждый момент времени могут выбираться произвольным образом. Обычно на область изменения u(t)при каждом tналагается ограничение где U заданное замкнутое множество в… …   Математическая энциклопедия

  • Metaball — 1: Взаимодействие двух положительных метасфер. 2: Взаимодействие положительной и отрицательной метасферы создает вмятину на положительной метасфере. Metaball (рус. Метасфера, также встречается «метаболл») n мерный объект в компьютерной графике,… …   Википедия

  • ГОСТ Р ИСО/МЭК 10746-2-2000: Информационная технология. Взаимосвязь открытых систем. Управление данными и открытая распределенная обработка. Часть 2. Базовая модель — Терминология ГОСТ Р ИСО/МЭК 10746 2 2000: Информационная технология. Взаимосвязь открытых систем. Управление данными и открытая распределенная обработка. Часть 2. Базовая модель оригинал документа: 6.3 Абстракция процесс отбрасывания… …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • Словесные названия российского оружия — …   Википедия

  • Nikon F4 — Производитель Nikon Год выпуска 1988 Тип Зеркальный, однообъективный. Фотоматериал …   Википедия

  • Парадигма — (Paradigm) Определение парадигмы, история возникновения парадигмы Информация об определении парадигмы, история возникновения парадигмы Содержание Содержание История возникновения Частные случаи (лингвистика) Управленческая парадигма Парадигма… …   Энциклопедия инвестора

  • СТО 70238424.29.240.01.003-2012: Единая национальная электрическая сеть. Условия предоставления продукции. Нормы и требования — Терминология СТО 70238424.29.240.01.003 2012: Единая национальная электрическая сеть. Условия предоставления продукции. Нормы и требования: 3.1.1 аварийный режим работы : Переходный режим работы энергосистемы, характеризующийся повреждением… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53326-2009: Техника пожарная. Установки пожаротушения роботизированные. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 53326 2009: Техника пожарная. Установки пожаротушения роботизированные. Общие технические требования. Методы испытаний оригинал документа: 3.15 блок питания: Устройство для преобразования переменного напряжения промышленной… …   Словарь-справочник терминов нормативно-технической документации

  • Printf — printf  обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода  вывода в различные потоки …   Википедия

  • Snprintf — printf обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода вывода в различные потоки значений… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»